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ABSTRACT

Object proposal, typically served as preprocessing of various
multimedia applications, aims to detect the bounding boxes
of possible objects in an image. In this paper, we propose
a novel object proposal method for RGB-D images based on
layered edges, which can effectively eliminate the influence
of the mixture of edges from objects and background and
improve the accuracy of proposals. Firstly, we detect the
sparse edges and correct depth on super-pixel representation.
Then, we use depth-adaptive sliding windows in sampling
of depth distribution and measure the objectness of each
candidate box in multiple depth layers. Finally, the candidate
boxes are ranked according to the integrated scores of all
the depth layers, and the final proposals are generated. The
experimental results show that the proposed method can
outperform the state-of-the-art methods on the largest RGB-D
image dataset for object proposal.

Index Terms— Object proposal, layered edge, depth
correction, window scoring

1. INTRODUCTION

Object proposal aims to detect bounding boxes of class-
independent objects in an image, which has been widely used
as the fundamental for various multimedia applications such
as object detection, tracking and retrieval [1-3]. To serve
as an effective preprocessing, object proposal is required to
generate bounding boxes with high accuracy for most existing
objects within a given image by providing considerably
small number of proposals [4, 5]. Moreover, it should also
be efficient enough so as to well facilitate the subsequent
processing [6].

Currently, the existing object proposal methods can be
roughly categorized into two major paradigms, window
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scoring based methods and grouping based methods [6].
Window scoring based methods typically use sliding windows
to sample candidate boxes, and measure the objectness,
i.e., the likelihood to enclose an object, of each candidate
box [7-9]. Grouping based methods usually over-segment
the given image into super-pixels or regions, and group
the segments according to their similarities. Compared to
grouping based methods, window scoring based methods
usually have higher efficiency, which are more suitable to
serve as preprocessing for other applications, but they easily
suffer the problem in proposal accuracy, i.e., they cannot
provide acceptable proposals under high intersection over
union (IoU) requirement [6].

Various features have been explored to improve the
boundary box accuracy in object proposal, such as with color
[7], saliency [10] and edge [8, 9]. Among these features,
the effectiveness of edge has been proved in window scoring
based object proposal methods [8, 9], for it can indicate object
boundaries which play an important role in object estimation
of human visual system [11]. However, current edge-
based object proposal methods cannot discriminate the edges
from objects and background within the candidate boxes,
which may lead to inaccuracy in objectness measurement.
Fig. 1 shows an example of the drawback of the mixture
in edges from objects and background. When measured
by a representative edge-based method, EdgeBoxes [8], a
candidate box (green) obtains higher score than the ground-
truth bounding box (red) due to the influence of the edges in
background (Fig. 1(b)).

In this paper, we propose a novel object proposal method
for RGB-D images based on layered edges. When viewing
a scene, human vision system quickly moves fixation points
in different depths by changing the diopter of eyes through
lens adjustment, instead of completely capturing all the
information in the scene [11]. Inspired by this characteristic,
our method counts the edges in different depth ranges, scores
each candidate box in each layer separately and combine
the scores to measure the objectness of the candidate box
(Fig. 1(c) and (d)). Fig. 2 shows an overview of the
proposed method. We first use structured edge detector [12]
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Fig. 2. An overview of the proposed method.
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Fig. 1. An example of the drawback in mixing the edges from
objects and background. (a) RGB-D image. (b) A candidate
box (red) and the corresponding ground truth bounding box
(green) with the scores measured by EdgeBoxes [8]. (c) and
(d) The candidate box (red) and the corresponding ground
truth bounding box (green) with the scores measured by our
method in different depth layers.

to obtain the sparse edge map with No-Maximal Suppression
performed. Then super-pixel is introduced to assist in
correcting the depth maps. According to corrected depth
map, we effectively divide the edges into several layers and
perform window scoring in individual layers by calculating
the magnitude and weight of edges wholly included in each
box. Finally, the ultimate score of each box is determined
by the scores inherent in layers and the weight computed by
the depth of each layer. In this way, the edges in objects
and background can be discriminated and the objectness
measurement will be not misled. The method is validated on

a public RGB-D image dataset for object proposal [13]. The
experimental results show that it outperforms the state-of-the-
art methods, especially for high accuracy requirement.

The rest of the paper is organized as follows. In Section 2,
we briefly review the related work to the proposed method. In
Section 3 and 4, we present the details of our method, and
validate its performance by comparing with the state-of-the-
art object proposal methods on NJU1500 dataset. Finally, we
conclude the paper in Section 5.

2. RELATED WORK

2.1. Typical Object Proposal Paradigms

There are two major strategies of object proposal, including
window scoring based methods and grouping based methods.
Window scoring based methods. Window scoring
based methods initially generate a large number of candidate
boxes through some sampling strategy, and then apply some
measures to judge how likely a single box seems to exactly
contain an object. Alexe et al. [7] first introduce the concept
of objectness measurement and put forward a measurement
computed by multiple appearance and geometry properties.
Feng et al. [10] follow the sliding window strategy and
propose a new measurement of saliency to score each
location. Cheng et al. [9] train a linear classifier model over
binarized normed gradient of edge features. Zitnick et al. [8]
utilize structured edge detector to estimate object boundary
and refine the initial boxes to improve the localisation.
Window scoring based methods usually have high efficiency,
but they are weak in providing the proposals with high ToU.
Grouping based methods. Grouping based methods is
usually initialized with over-segmentation which generates
quantities of segments like super-pixels. Carreira et al. [14]
utilize several seeds for computing graph cuts in order to
avoid initial segmentation and rank the resulting segments



by a large amount of features. Humayun [15] improve
it by adopting edge detectors and applying multiple graph
cuts. Uijlings et al. [16] propose Selective Search which
greedily merge the super-pixels. Wang et al. [5] apply
multi-branch hierarchical segmentation in Selective Search
process and achieve improvement. Xiao et al. [4] also
improve it through specifying the super-pixel merging in
high-complexity scene. Long et al. [17] train a supervised
model to greedily adjust the boxes after obtaining initial
boxes through bottom-up merging. Arbelaez er al. [18]
propose multiscale combinatorial grouping. Krihenbiihl ez al.
[19] start from over-segmentation and use classifiers to place
seeds in order to perform geodesic transform, so that object
proposals are defined by level sets of each distance transform.
Chen et al. [20] put forward a method to utilize multi-
thresholding straddling expansion to adjust result bounding
boxes generated by existing methods. Grouping methods can
provide the proposals with high accuracy, for the boxes they
generate fit to object boundaries well, but they usually suffer
low efficiency problem.

2.2. Depth-assisted Object Proposal

In object proposal for RGB-D images, depth is considered as
an effective cue to discriminate objects from background.

Xu et al. [21] firstly introduce depth cue into object
proposal by adaptively integrating depth gradient map to RGB
gradient map in BING [9]. Nevertheless, similar to BING,
the method cannot provide acceptable proposals under the
requirement of high IoU. Gupta et al. [22] incorporate depth
into MCG framework and produce 2.5D Object Proposal.
But its effectiveness of feature extraction depends on the
consistency of depth camera parameters. Zheng et al. [23]
presented a method which improve the 3D object category
proposal generating pipeline introducing a shallow ConvNet
layer for training to improve the accuracy. Its improvement
for BING mainly focuses on loosing IoU threshold to 0.5,
thus its cannot provide acceptable preprocessing results in
detection or other real applications. Hence, the potential of
depth cue has not been fully explored to efficiently generate
proposals with high IoU.

3. METHODOLOGY

3.1. Sparse edge detection

We first generate the sparse edge map on color channel of
RGB-D images by Structured Edge detector [12]. The pixel
with magnitude not more than 1y, = 0.1 is regarded as not
strong enough to be part of the boundary so that we remove
them. As shown in Fig. 3(a), edges in different color means
different edge groups which are the minimum units to judge
whether it is wholly enclosed in a box. The edge group is
formed by greedily merging the pixels on the edge until the

sum of orientations of every two adjacent pixels larger than a
threshold, which equals 7/2 in our experiments.

3.2. Depth Correction

Due to the limitation of the existing depth estimation
methods, inaccurate boundaries and noises often appear
in depth channels of RGB-D images. The inaccuracy of
depth channel will lead to the mistakes when assigning
edges to different layers and further influence the objectness
measurement of candidate boxes. So it is necessary to correct
depth channel of RGB-D images before layering edges.

In our method, we correct depth channel of an RGB-D
image based on the super-pixel representation generated from
its color channel. We first generate super-pixels with simple
linear iterative clustering (SLIC) algorithm [24], and set the
average depth of each super-pixel to all the pixels within it.
Then, to each pixel in the detected sparse edges, its depth
value is set as the nearest depth value of its eight neighboring
pixels. In this way, the influence of inaccuract boundaries
and noises in depth channel will be obviously eliminated.
Fig. 3 shows an example of depth correction. Compared to
the original depth channel (Fig. 3(a)), we can find that more
boundary edges of the horses are located in correct depth after
correction (Fig. 3(c)).

3.3. Depth-aware Layered Edges

Based on the corrected depth channel, we assign the sparse
edges to multiple layers and independently measure the
objectness of candidate boxes on each layer based on the
corresponding edges.

In sparse edge assignment, we use an adaptive sliding
window in depth distribution for sampling. The size of sliding
window is adjusted from small to large when sampling from
distant to near, for human vision system is more sensitive to
the depth difference located in near than in distant. Assume
the depth value is in the range of [0,1] (here 1 means the
nearest and 0 means the most distant), we calculate the edge
magnitude of pixel p; ; in layer [ of all the L layers as follows:

o o e o(l=1) <dij <wo+ (o +p)(1-1) 0
e 0, otherwise
where ¢; ; is the magnitude of pixel p; ; in sparse edge map;
d; ; is the depth value of p; ;; wy is the initial size of sliding
window, i.e., window size in smallest depth value; o is the
step length of sliding; p is the addition of sliding window
size. In our experiment, we use wg = 0.2, 0 = 0.025 and p
= 0.025. Totally, there are L = [1=%0 4+ 17 layers generated

. . otp
for independent objectness measurement.

3.4. Proposals Ranking

As shown in [8], we sampling the candidate boxes and
measure their objectness on each layer independently. We
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Fig. 3. Depth correction guided by super-pixels of color
channel. (a) Intial depth channel of an RGB-D image with
colored edge groups. (b) Depth correction on super-pixel
representation. (c) Corrected depth with colored edge groups.

cluster the neighboring pixels of similar orientation to form
edge groups and use edge groups as representation of edges
as [8]. The affinity of two edge groups g; ;, g;,; on layer [ is
defined as:

flaisg1,5) = |cos(au; — auij)cos(ou; — auij)l,  (2)

where «; ; and oy ; are the mean orientation of edge group g; ;
and g; j; «y; ; reflects the angle difference between g; ; and
g1,;> which is computed by difference of their mean position’s
orientation.

Then, we define the weight of ith edge group in a
candidate box b, on layer [ as follows:

Q-1
Wiy = —max( [ flak ar)), 3

k

where () is a set of sequences of edge groups on layer [ with
length of |Q;|, whose starting point is on candidate box b,
and ending point is on edge group ¢; ;. In this way, all the
edge groups out of candidate box b, or overlap the boundary
of b, will be weighted to zero. And the path with the highest
affinity between the ith edge group and an edge group that
straddles the box will be found.
And we calculate the score of b, on layer [ as follows:

o = > Wy 1,31 B Zpyebgt My @)
b 9wy + hy)? 2wy /2 + By /2)

where 7 ; represents the sum of magnitude of edge group
91,55 My is the edge magnitude of pixel p, on layer [;
b¢t is the box central in b, with both half height and half
width of b,; 7 is a parameter to balance the naturally large
sum of magnitude in larger boxes, which equals 1.5 in our
experiments.

Finally, we integrate the scores of each candidate box
b, on all the layers. Considering that the distant content in
an RGB-D image usually has low possibility to contain an
object, we define a depth weight to bring in depth priority:

d 1—v
we=vh Ty

(l - 1)7 (5)

where v is a parameter of the minimum weight for the most
distant layer, which equals 0.1 in our experiments. The
overall score of candidate box b, is calculated as:

Su :max(wf’sm),l € {1,2,...,L}. (6)

We use the same refinement strategy as [8] to re-sample
and score the candidate boxes around the locations with high
scores. In addition, we perform non-maximal suppression to
reduce the remaining number of boxes to improve the ranking
of diverse boxes.

4. EXPERIMENTS

4.1. Dataset and Experiment Settings

We validate the proposed method on NJU1500 dataset, which
contains 1,500 stereo images with the corresponding depth
maps generated by optical flow method [25] and manually
labelled ground truths of object locations. To the best of
our knowledge, it is the largest RGB-D image dataset for
object proposal. Moreover, NJUI1500 dataset is balance in
object number distribution among images, i.e., the numbers
of images including 2, 3, 4, 5, and 5+ (more than five) are
same. And its average object number in each image is 4.22,
which is higher than the average object number 3.02 of the
widely used PASCAL VOC 2007 dataset [26].

In our experiments, we set the required IoU value to 0.8
to emphasize the accuracy of proposals, which is beneficial to
the following processing in real applications. We also utilize
Average Recall (AR) [6] as a criterion to comprehensively
evaluate the performance under different IoU requirements,
which is calculated as:

1

AR(#prop) = /05 Recall(x, (#prop)) @)

where Recall(x, (#prop)) is the function of recall over
ToU; AR(#prop) actually calculates the area between [0.5, 1]
under the Recall-IoU curve when proposal number is #prop.
Furthermore, the Average Recall versus Number of Proposal
curve is also used in performance evaluation for it is balanced
to different IoU settings.

All the experiments were carried out with Intel i5 2.8GHz
CPU and 8GB memory. For all the other methods engaged
in comparision, we use the default settings suggested by the
authors.

4.2. Comparision with State-of-the-Art Methods

To demonstrate its effectiveness, we compare the proposed
method to the typical window scoring based methods and
grouping based methods with public source codes. The
compared methods includes adaptive integration depth and
color (AIDC) [21], binarized normed gradients (BING) [9],
edge boxes (EB) [8], objectness (OBJ) [7], geodesic object



Table 1. Comparison of our method in running time with the
state-of-the-art methods.

Method Type Language Time (s)
AIDC [21] window C++ 0.07
BING [9] window C++ 0.06
EB [8] window C++ & Matlab 0.69
OBIJ [7] window C++ & Matlab 4.13
GOP [19] grouping | C++ & Matlab 7.25
MCG [18] grouping | C++ & Matlab | 60.12
RCNND [22] | grouping | C++ & Matlab 65.52
SS [16] grouping | C++ & Matlab 6.39
MEB [20] integration | C++ & Matlab 0.99
Ours window | C++ & Matlab 4.54

proposal (GOP) [19], multiscale combinatorial grouping
(MCQG) [18], selective search (SS) [16], and expansion by
multi-thresholding straddling of edge boxes (MEB) [20].

Fig. 4 shows the comparison result. As shown in Fig. 4(a),
we can find that our method obviously outperforms the other
methods under IoU = 0.8. To the second place method,
MCG, our method is still nearly 0.2 higher in recall, even
MCG is more than thirteen times slower than our method
(Table 1). And RCNND does not outperform MCG here,
for the inconsistent camera parameters of RGB-D images in
our dataset seriously influence the effectiveness of feature
extraction on depth. Moreover, as shown in Fig. 4(b) and
(c), our method keeps the best performance on average recall
when the number of proposals is larger than 1,500, and it
outperforms other methods under IoU from 0.7 to 0.9.

Fig. 5 shows some examples of object proposal results
generated by our method. The best bounding boxes to ground
truths within the top 5,000 of each image are marked with
green bounding boxes. It is found that almost all the objects
are detected by our method.

We also validate the efficiency of the proposed method.
As shown in Table 1, our method retains relatively high
efficiency as well as achieve high accuracy in object proposal.

5. CONCLUSION

In this paper, we propose an effective object proposal method
RGB-D images based on layered edges. To discriminate the
edges from different objects and background, the sparse edge
map detected on the color channel of RGB-D image is layered
with adaptive sliding window according to the corrected
depth channel. For each candidate box, its objectness is
independently measured on all the layers and then integrated
to generate the proposals. The experimental results show
that our method obviously outperforms the state-of-the-art
methods under high IoU requirement.
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Fig. 5. Examples of object proposal generated by the proposed method. All the green bounding boxes are the best bounding
boxes to ground truths within the top 5,000 proposals.
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