
Shadow Filesystems: Recovering from FilesystemRuntime Errors
via Robust Alternative Execution

Jing Liu, Xiangpeng Hao, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, Tej Chajed
University ofWisconsin –Madison

Abstract
We present Robust Alternative Execution (RAE), an approach to
transparently mask runtime errors in performance-oriented
filesystems via temporarily executing an alternative shadow
filesystem. A shadow filesystem has the primary goal of ro-
bustness, achieved through a simple implementation without
performance optimizations and concurrency while adhering
to the same API and on-disk formats as the base filesystem
it enhances. While the base performance-oriented filesystem
may contain bugs, the shadow implementation is formally
verified, leveraging advancements in the verification of low-
level systems code. In the common case, the base filesystem
executes and delivers high performance to applications; how-
ever, when a bug is triggered, the slow-but-correct shadow
takes over, updates state correctly, and then resumes the base,
thus providing high availability.

CCS Concepts: • Software and its engineering → File
systems management.

Keywords: Filesystems, Reliability, Verification

1 Introduction
Modern filesystems are complex, with numerous bugs and
security issues reported every year [34, 41]. Bugs can lead to
crashes of the filesystem (and OS), harming system availabil-
ity and user experience, and potentially leading to data loss
or even – in a distributed setting – cascading failures [20, 25].
As a core-component of the OS, Torvalds has stated that

the filesystem has a mission to “continue regardless” [35],
i.e., to remain available to running applications if at all pos-
sible despite encountering a problem. For example, calling
panic is discouraged in modern Linux kernel development,
with a preference for issuing a warning message and con-
tinuing execution [27]. However, in-place failure handling,
especially in the context of a complicated concurrent code

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.
HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0630-1/24/07
https://doi.org/10.1145/3655038.3665942

base, is known to be challenging and error-prone [22, 53]. As
such, in many cases, the best approach is simply to crash and
recover from known on-disk state, and suffer the resulting
loss of availability and related negative consequences.

A major impediment to continued execution after encoun-
tering a bug are complex, performance-optimized IO stacks.
Filesystem implementations (e.g., ext4, btrfs, xfs) interact and
evolve with performance-oriented components throughout
the entire IO stack such as the inode cache, dentry cache, and
block layer. Numerous performance enhancements have been
introduced to those components in recent years, including
block-mq, page folios, iomap, io_uring, and polling-mode
IO [14, 15, 19, 47]. Moreover, filesystem implementations are
highly concurrent, both when accessing in-memory and on-
disk structures [43]. As such, bugs are likely to continue to
exist in these systems, even in highly tested systems.

In this paper, we make the case for Robust Alternative Exe-
cution (RAE), a practical approach to improving the reliability
of existing complex and performance-oriented filesystems via
shadow filesystems. Most of the time, the shadow filesystem
liesdormant, and thebasefilesystem runsandhandles requests.
However, when an error is detected in the base, the shadow is
invoked.Theshadowthenperformsrecoveryby (re)executing
the problem-inducing operations, generating the necessary
state updates, and returning control to the base filesystem.
A shadow filesystem, when paired with a base filesystem,

represents a form of N-version programming [4]. However,
its goals are different than the base. The shadow prioritizes
correctness over performance to realize the simplest possible
sequential implementation. Concurrency, caches, asynchro-
nous execution, and other performance optimizations are
omitted, as they are not essential.

A shadow filesystem improves the reliability of the filesys-
tembyemploying twotechniques:practical formalverification
(static time) and extensive invariant checks (run time). By sim-
plifying a given filesystem to its simplest (non-optimized)
form, the implementation of the shadow can be readily ver-
ified using modern formal verification tools [33]. Since it is
not necessary to reason about caching, multi-threading, and
various performance tricks, formally verifying the shadow is
practical, sustainable, and the verified code is easy to evolve
with the base filesystem. Invariant checking at runtime com-
plements formal verification by checking properties that are
difficult to model formally, e.g., hardware failure. A shadow
should thus employ extensive checks that are infeasible for
performance-oriented base filesystems.

15

https://doi.org/10.1145/3655038.3665942
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3655038.3665942&domain=pdf&date_stamp=2024-07-08

Deter-
minism

Conse-
quence No Crash Crash WARN Unknown Total

Deterministic 68 78 11 8 165
Non-Deterministic 31 26 19 7 83

Unknown 5 2 1 0 8

Table 1. Study of filesystem bugs (Linux ext4). Bugs that
do not have reproducers, or are related to the interactionwith
IO (e.g., multiple inflight requests), or are related to threading,
are classified as non-deterministic. Bugs are classified as Un-
known in their consequence when the commit message does
not contain clear clues of external symptoms. The columns
present the numbers of bugs according to each consequence.
WARN indicates the bug hits aWARN_∗() path, the suggested
substitute of BUG() in the Linux kernel. We collect the bugs
by filtering the ext4’s subtree’s git log with the mentioning
of “bugzilla” or “reported by” (256 bugs in total since 2013).

With these techniques used in its construction, a shadow
filesystem enables the base filesystem to tolerate a broad
class of bugs, even (potentially) deterministic ones. As such,
a shadow filesystem improves availability and robustness of
the filesystem while maintaining high performance in the
common case.

In the rest of this paper,wefirst present further background
and motivation for shadow file systems. Next, we discuss the
basic design of a shadowfilesystem, including the faultmodel,
basic approach, and necessary changes to the base. Finally, we
discuss the roadmap towards realizing shadows for various
modern filesystems, and then conclude.

2 Background and Approach
Wepresent amini-study of filesystem bugs that motivates the
RAE approach for dealing with runtime errors in a unified
manner, formulate the main problems, and lay out the key
design perspectives and principles.

2.1 Recovering from FilesystemRuntime Errors
Modern high-performance filesystems suffer from hardware
faults and software bugs, leading to runtime errors. As a core
OS service, filesystemruntimeerrorsmay cause service down-
time or data corruption.

Prior work shows how to handle (some) non-deterministic
faults [7, 10, 17, 23, 48], however, in practice, many faults are
deterministic. We study bugs in the Linux ext4 filesystem and
categorize them. As shown in Table 1, deterministic bugs are
prevalent (165/256), and a significant portion cause crashes
or warnings that are detected as runtime errors (89/165). All
errors that can be detected are handled by the shadow.

Figure 1 presents the number of deterministic bugs by the
year of fixes. More bugs are fixed in recent years for two rea-
sons. First, advances in testing reveal more vulnerabilities,
especially in input sanity checks. Second, new kernel features

0

5

10

15

20

25

30

N
u

m
b

e
r

o
f

B
u

g
s

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

2
0

2
0

2
0

2
1

2
0

2
2

2
0

2
3

Year

Crash

NoCrash

WARN

Unknown

Figure 1. Number of deterministic bugs by the year.
Examples of NoCrash consequences include data corruption,
performance issue, permission issue, freeze, deadlock, etc.

such as blk-mq, page folios, and iomap [14, 15, 19] introduce
new bugs. One notable type of deterministic bug occurs when
a user mounts a crafted disk image and issues operations to
trigger a null-pointer dereference or use-after-free in the ker-
nel [13, 38, 52]; such images can bypass FSCK [26], leading to
crashes frommalicious attackers.

N-version programming [4–6] (NVP) is a classic approach
that can handle deterministic bugs. NVP advocates the inde-
pendent development of several versions of softwarewith the
same specification, running them simultaneously to generate
output by combining the decision of each version (via voting).
Despite its conceptual advantage of detecting and masking
one version’s fault, the assumption of statistically indepen-
dent failures does not usually hold [30]. Further, maintaining
and executing multiple versions (often, at least three) incurs
excessive overhead.

Weproposeadifferent approach–RobustAlternativeExecu-
tion– to handle arbitrary deterministic and non-deterministic
runtime errors for a given base filesystemvia a shadowfilesys-
tem. As shown in Figure 2, after detecting an error, a shadow
is launched as the temporary substitute of the base to execute
the problematic filesystemoperation sequence and return cor-
rectmetadata updates to the base.While the base is optimized
for performance in the common path, the shadow strives for
robustness. Such a solution must address the problems of
contained reboot, state reconstruction, and error avoidance,
as we discuss next.

2.2 Problem Statement
With RAE, our focus is on safe recovery after an error is
detected. Figure 3 illustrates the challenges of recovering
filesystem errors without affecting applications. The goal is
for the shadow to safely re-execute an operation sequence
that has triggered errors in the base. At runtime, a filesystem
starts from an on-disk state (𝑆0) and executes a sequence of
operations (i.e., Op0 to Op3) issued by applications. When
Op3 completes, its effects become visible to the application,
but themodifications tometadata andfile descriptorsmaynot
be persisted due to caching. While executing each operation,
other states not visible to the applications (e.g., intermediate

16

Dentry

Cache

Inode

Cache

Data Block

Cache

Block Layer (asynchronous IO)

Driver

BaseFS

App

ShadowFS

synchronous

BIO

Driver

Interaction with App

Separate User-

level Process

Record Operations

Metadata Update

FS API ret + data

Concurrent

Components

Return

Read

Write
Read

Common Path

(performance)

Alternative Path

(error handling)

RAE

components

E.g., {op1, op2, …, op4}

Filesystem Implementations
After Errors

Input

Output

Figure 2. Filesystem architecture with shadow filesys-
tems. The left side shows the constructs of modern
concurrent and performance-oriented filesystems; the right
side shows the shadow.

data structures like caches, etc.) are also changed. While exe-
cuting Op4, an error is triggered, failing to reach the expected
states of 𝑆5.

We identify threemainchallengesof recovering fromfilesys-
tem errors. First, contained reboot: the error of the base must
not bepropagated touser applications andnot crash the entire
machine. Sucha reboot ensures that the erroneous in-memory
states of the filesystem are cleaned and the subsequent recov-
ery is based on a well-defined states that can be assumed
correct (e.g., on-disk states of 𝑆0). Once an error is detected,
all the states in the base filesystem’smemory is not trusted, so
we need to reset them, including themetadata and file descrip-
tors. For example, in some cases, the states at the point of 𝑆2
could already be erroneous (not detected), though the return
value is correct and the application is unaware of the error.
The application must not be terminated and its own compu-
tation with an up-to-date view of op3’s completion must be
preserved. Techniques like OS kernel or kernel subsystem’s
microreboot [17, 48] facilitate contained reboot.

Second, state reconstruction: the recovery must ensure the
resulting essential filesystem states (i.e., 𝑆4) adhere to the API
semantics (e.g., POSIX) for the completed operations, and al-
lows in-flight operations (e.g., Op4) to complete. For instance,
the inode number of a file and file descriptor numbersmust be
identical to the applications for completed operations. These
essential states include all on-disk filesystem data structures
and file descriptors; however, unessential states may differ
(e.g., whether a clean inode is cached in memory). The recov-
ery starts from the trusted-correct states (𝑆0) and reconstructs
the states using the error-triggeringoperation sequence (from
op0 to op4).

Third, error avoidance: during reconstruction, the original
error and its manifestation path must be circumvented so
that final states can be reached (𝑆5 and others). However, a

S0 S1 S2 S3

Op0 Op1 Op2 Op3 Op4

S0

App View

InMem FS

OnDisk FS

S4

visible

S5

Essential

States

Other

States
Op1 Operation Intermediate

2

3

Error

Detected

Figure 3.Main problems. 1 : Contained reboot. 2 : States
reconstruction. 3 : Error Avoidance. Essential States include
the metadata and file descriptors.

fundamental conflict exists between state reconstruction and
error avoidance when dealing with deterministic errors [40]:
themost straightforward approach for the base to reconstruct
states is to re-execute the same sequence of operations, but
this would trigger the same error. Returning an error code
for the problematic operations is insufficient because the re-
executed prefix sequence puts the system into an unknown
state such that the base is unsafe to continue.

2.3 A Practical Approach: RAE
Weadvocate robustalternativeexecution (RAE), apractical ap-
proach to improve the reliabilityof existinghigh-performance
filesystems [34] via shadow filesystems. The shadow filesys-
tem is an alternative simple implementationof the basefilesys-
tem that executes operations in the error-handling path, re-
constructing states and avoiding errors. Alternative execu-
tions for fault tolerance have been explored in device dri-
vers [49, 50], CPUprocessors [3], and distributed sharding [1];
a shadow filesystem aims to tolerate a broader range of errors
(including deterministic bugs) and handle stateful filesystems.

As shown in Figure 2, RAE records the operation sequence
that produces the buffered update (of metadata and file de-
scriptors) in the base [48]. After an error is detected, the in-
memory metadata and file descriptors in the base are reset
during a contained reboot because they may be erroneous. A
separate shadow filesystem process is launched to execute
the recorded operations (reading any data required from the
disk), and the shadow filesystem produces new (and correct)
metadata structures that are directly used by a rebooted base.
As such, the rebooted base starts from the recoveredmetadata
and file descriptors without needing to re-execute the error-
triggering operation sequence. The data pages are shared
between the base and the shadow because only applications
can detect their corruption.
The shadow filesystem has three essential properties: it

is simple, leverages advances in formal verification, and em-
ploys extensive runtime checks.
Simple yet equivalent implementation:Modern filesys-
tems are complex, primarily due to optimizations for con-
currency, caching, and asynchronous interaction with stor-
age devices. The software architecture (Figure 2) of modern

17

filesystems includes an interface layer for (un)marshaling
and user-interaction (e.g., VFS), a cache for inode, data blocks,
and directory entries, and numerous concurrency-related
optimizations. A block layer (e.g., blk-mq) interacts with stor-
age devices in an asynchronous fashion, employing various
mechanisms and policies for performance. In between, vari-
ous filesystem implementations (e.g., ext4, xfs, etc.) share the
same caching and block layers: a filesystem implementation’s
complexity and thus likelihood of bugs is exacerbated due to
the interactions with these performance components.
To improve robustness, a shadow eliminates all perfor-

mance optimizations, focusing instead on correctness. It thus
aims to be the simplest possible yet equivalent implemen-
tation of the base filesystem. To reduce complexity and the
likelihood of bugs, a shadow is not interactive to users, does
not have concurrency, does not have sophisticated caching
structures and policies (e.g., LRU 2Q [36]), performs IO syn-
chronously, and does not write to devices, as shown on the
right sideof Figure 2.A shadowdoesnotneed logic for on-disk
durability, because it never writes to the disk: completed sync
operations are already on disk (and serve as the shadow’s
input) and incomplete sync operations are delegated back to
the base filesystem.
Practical formal verification: To achieve robustness, a
shadow aims to be absolutely correct, as inspired by prior
verified filesystems such as FSCQ [11, 12]. Note that the sim-
plifications made in the shadow also simplify the formal ver-
ification. Prior works verifying filesystems focus on complex
aspects like concurrency and crash safety, which are elimi-
nated in the shadow; therefore, a formally-verified shadow
filesystem is more feasible for non-experts in formal methods.
The time is ripe for shadow filesystems due to the avail-

ability of better tools for verifying low-level system code.
Verus [33], an open-source, semi-automated verification tool
for Rust, is designed to verify low-level systems with a re-
duced proof burden. Given Rust’s capability to interact with
hardware, we believe that a formally verified shadow filesys-
tem is practical [9]. Given the adoption of Rust in system
software like Chromium and the Linux kernel, the shadow’s
implementationcanevolvealongsideexistingcomplexfilesys-
tems, similar to how specifications using lightweight formal
methods are integrated into AWS S3’s storage systems [8].
Extensive runtime checks: In addition to formal verifica-
tion at compile time, the shadow employs extensive runtime
checks to ensure liveness. Runtime checks defend against
transient hardware faults that are outside of the specifica-
tion, e.g., the silent data corruption of CPU cores [18, 24, 51].
These runtime checks include validating input operations
and disk images, as well as other sanity checks. Due to per-
formance concerns, runtime checks are commonly disabled
in the base, but the shadow can enable all possible checks to
survive dynamic errors without performance concerns.

3 Shadow Filesystems
We describe shadow filesystems, covering the fault model,
enhancements to the base filesystem, control flow between
base and shadow, and the shadow’s recovery process.

3.1 Fault Model
The shadow filesystem aims to handle all software bugs (tran-
sient and deterministic) and transient hardware faults. Deter-
ministic hardware faults requires additional techniques [45],
for instance, avoiding a specific memory region [46]. We as-
sume that errors are detected before being persisted to disk,
which can be achieved by techniques like validating upon
sync [21, 32]. Such detection enhancement helps identify the
problematic operation sequence. Finally, we trust device dri-
vers are not malicious.

3.2 Design
Overview: To run the shadow for failure recovery, the base
filesystem must record the operation sequence that tracks
the gap between the applications’ view and the on-disk state.
Essentially, this is an execution trace that records the order
that operations were handled, reducing the non-determinism
of the shadow. The recorded operation sequence also reflects
the outcome of the operations, such as the return value, new
file descriptors, and new inode numbers. When a file descrip-
tor is closed and the buffered updates are flushed to disk, the
corresponding recorded operations can be discarded.
When an error is detected, control is transferred to a re-

covery procedure that addresses the three problems formu-
lated previously (§2). The recovery procedure discards the
in-memory states of the base and reboots it without affecting
the OS or applications. The reboot incorporates the base’s
crash recovery mechanism, such as journal replay. The re-
covery procedure then launches the shadow, delivers the op-
eration sequence to it, waits for the outcome, and returns the
results to the rebooted base.During recovery, newapplication
operations are not admitted.
Recovery: The shadow filesystem is launched as a separate
userspace process to ensure the strong isolation of faults and a
clean interfacebetween thebaseandshadow; the shadowdoes
not interact with applications. It has two operation modes:
constrained and autonomous. When the base is executing, the
shadow is dormant; its constrained and autonomous modes
handle completed and in-progress operations, respectively.
In constrained mode, the shadow executes completed op-

erations, possibly performs disk reads, and produces output
along with a set of modified data structures. Constrained
mode also cross-checks with the output of the original exe-
cution. Discrepancies in output are reported; whether or not
to continue can be configured. For inode number and file de-
scriptor allocation, the shadowvalidates if the value produced
by the base filesystem is usable, rather than performing its

18

own allocation (which could lead to a different value). The
shadow omits operations that returned an error by the base.

In autonomous mode, the shadow executes the in-progress
operations whose return values have not been seen by the
client. In this mode, the shadowmust make policy decisions
such as allocating new inode numbers (as opposed to simply
validating the decisions made by the base). The shadow does
not handle fsync, following the rule of not writing to disk.
Hand-off back to the base: The base filesystemmust sup-
portmetadata downloading by providing extensively-tested
interfaces to absorb the output of the shadow: a set of file
descriptors and on-disk metadata structures. To implement
the interfaces, the base reads these structures and reuses its
existing logic to place them into its cache, marked as dirty. Af-
ter the hand-off, the base resumes execution and admits new
operations, at which point all state within the base filesystem
is correct and up to date.

3.3 Contrasting Base and Shadow
The base and shadow filesystems are different in four ways.
Performanceoptimizations:As shown in Figure 2, the base
filesystem interacts with components that are omitted from
the shadow. Specifically, the shadow does not use a dentry
cache, and instead always performs path lookup from the root
inode and scans the directory entries. The shadow does not
utilize the concurrent inode and data block caches; instead,
it uses a simple data structure to manage filesystem struc-
tures read from disk during recovery. The shadow is strictly
single-threaded and uses synchronous IO; it does not deal
with locking, concurrency, or block-level IO scheduling.
Robustness properties: The shadow has a strong correct-
ness guarantee, relyingon static formal verification and exten-
sive runtime checks. Thus, the shadowdevotes a large amount
of code to assertions and validations for given procedures.
API support: The shadow filesystem supports the same set
of filesystem operations as the base, excluding those that per-
sist data to disk, such as fsync. We omit the sync family API
for simplicity, to avoid interacting with the crash consistency
protocol. The contained reboot enables such simplification be-
cause it recoversbufferedupdatesanddoesnotneedaprotocol
to make states durable. If the base fails in the middle of fsync,
our current design relies on the shadow for the prefix oper-
ations and the base to perform fsync again after the hand-off.
Core functionality: For a given operation sequence, the out-
put at the API level and the effects to on-disk structures must
be equivalent between the base and the shadow.While some
policy decisions might differ, the two must agree on essential
invariants. For example, allocating ten data blocks for a 4K
write can be valid behavior for a specific base filesystem, but
the specific blocks allocated might differ, leading to differ-
ent data bitmaps. Allowing such difference while ensuring
equivalence is one key challenge in developing the shadow.

4 Roadmap and Challenges
We posit that shadowing is a generic approach that works for
modern performance-oriented filesystems regardless of the
architecture of the OS. Linux kernel filesystems have been
the de facto for decades and these complex kernel filesystems
are not likely to be replaced in the near-future [2]. However,
future trends for simplifying development and fault isola-
tion are hinted at by the recent revisiting of microkernels in
industry [42] and research [37, 42], and by the eBPF frame-
work [44]. Therefore, we plan to explore case studies along
two paths: kernel filesystems and microkernel filesystems.
We now describe the main challenges in each approach.

4.1 Linux Kernel Filesystems
The Linux kernel file IO stack follows the architecture in Fig-
ure 2. Commonly-known filesystems like ext4, btrfs, and xfs
are a variety of base filesystem implementations sharing the
same infrastructure. Therefore, all base filesystems can share
the fault-anticipation mechanisms for recording operation
sequences and transferring control. However, each base must
provide its own interface for metadata downloading from its
shadow since the on-disk formats differ.
Contained reboot:Contained reboots are challenging in ker-
nel filesystems, but earlier work [17, 48] demonstrates how
this can be done without crashing the entire machine. How-
ever, kernel infrastructure has evolved significantly during
the last decade, with io_uring and block-mq in the block layer,
complexpolicies for thepagecache [16], andnewmechanisms
for managing pages (e.g., folios and iomap) with modern stor-
age devices [15, 19]. The shadowmust reset the interactions
with these components; one plausible solution is to rely on
existing code paths to do so (e.g., code that drops cacheswhen
memory pressure is high, and unmount).
States reconstruction:The on-disk formats of kernel filesys-
tem implementations are notwell-documented [31], although
an explicit ABI is in demand [26]. This lack enables crafted
images to bypass the checks of e2fsck and crash the entire
machine with a sequence of filesystem operations [26]. We
hope that the implementation of a formally-verified shadow
filesystem can serve as an ABI. Another technical challenge
is that the shadow’s synchronous IO mechanism must also
be verified, requiring direct reading from the block device,
bypassing the kernel’s BIO layer whose implementation is
challenging to verify. However, the kernel does not expose
such an interface to invoke device driver code that bypasses
its BIO layer. One approach is to unmount the device and
then read the device through a user-space NVMe driver [47].

4.2 Microkernel Filesystems
Several microkernels are available [23, 29, 37], but, to the best
of our knowledge, only uFS [37] is optimized for filesystem
performance. Microkernel filesystems are interesting given
their natural fault isolation and thus effortless delivery of a

19

contained reboot. It will be interesting to compare the effort
needed to support kernel and microkernel filesystems.

4.3 Cross-Cutting Challenges
One interesting and challenging question, regardless of the
path, is how to implement the simplest version of a filesystem
via Rust that can also be easily verified. Using Rust to interact
with hardware poses new challenges due to its compilation-
time restrictions, and our requirement of “simplest for veri-
fication” makes the question more interesting.

How formal verification is used in shadow filesystems has
novel angles. Compared to prior formally-verified filesys-
tems [11, 12, 54], verification of a shadow is greatly simplified
due to its reduced complexity, yet it necessitates stronger
liveness guarantees. For instance, to ensure the shadow is ro-
bust against crashes given a crafted filesystem image and call
sequence, the input image must be guaranteed to be valid, es-
sentially requiring a verified version of the filesystem checker
(FSCK). Another issue is how to add the constraints of com-
pleted operations.

Another interesting issue is the time required for recovery.
Even though recovery performance is not a primary concern
for the shadow filesystem, recovery time does impact the ex-
pected response time observed by applications with in-flight
operations.
From a correctness aspect, the interaction between the

shadow and the base, especially metadata downloading, re-
quires a lean, well-defined, and thoroughly tested interface.
Our current plan is to reuse the code from the base’s imple-
mentation to read the metadata from the device and fill the
base’s cache (e.g., page cache, inode cache). We expect to
quantify the code we trust (i.e., reused).

Finally, the systemmust ensure thebase and shadowfilesys-
tems produce equivalent output for a sequence of operations.
Verification alone is insufficient for this property, therefore,
testing is necessary before using the shadow [8]. The testing
phaseuses thebaseas a referencefilesystemto test the shadow
by running a large volume of workloads and monitoring for
discrepancies. Disagreements between the base and shadow
indicate bugs in the base or missing conditions in the shadow.
In the former case, running the shadow is an effective way
to stress the bug in the base, as the sequence and outputs are
recorded (input to the shadow), making the shadow filesys-
tem a valuable post-error testing tool, especially for inputs
oftenmissed by testing frameworks [28, 39]. In the latter case,
such discrepancies help to improve the shadow to cover the
missing conditions. Either way, reporting the discrepancies
is necessary, thereby enhancing system reliability.

5 Conclusion
Building a high-performance concurrent filesystem is chal-
lenging; formally verifying a complex filesystem with perfor-
mance optimization and concurrency is similarly daunting.

With RAE, we introduce the idea of two filesystems working
in tandem to achieve a singular goal: high performance in the
common case and correctness and high-availability despite
bugs and errors in rare cases. With separate concerns and
largely-reduced complexity, the formally-verified shadow is
practical to develop and evolve together with the base.
While we explore this RAE approach via shadows in the

filesystemcontext,webelieve itmayalso be interesting topur-
sue themore general two-pronged approach in other systems
as well. The adoption of fully-verified code into existing ma-
ture systems, as well as using it as a building block to improve
overall reliability, has great potential.

Acknowledgement
We thank Raju Rangaswami (our shepherd), anonymous re-
viewers, and the ADSL group for their comments and sugges-
tions. This material was supported by funding fromNSF CNS-
1838733. Jing Liu was supported by aMeta PhD Fellowship.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and may
not reflect the views of NSF or other institutions.

References
[1] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek,

Vishesh Khemani, Stefan Fulger, Pan Gu, Lakshminath Bhuvanagiri,
Jason Hunter, Roberto Peon, Larry Kai, Alexander Shraer, Arif
Merchant, and Kfir Lev-Ari. 2016. Slicer: Auto-Sharding for Datacenter
Applications. In Proceedings of the 12th USENIXConference onOperating
Systems Design and Implementation (OSDI ’16). Savannah, GA.

[2] Abutalib Aghayev, SageWeil, Michael Kuchnik, Mark Nelson, Gregory
Ganger, and George Amvrosiadis. 2019. File Systems Unfit as
Distributed Storage Backends: Lessons from 10 Years of Ceph Evolution.
In Proceedings of the 26th ACM Symposium on Operating Systems
Principles (SOSP ’19). Ontario, Canada.

[3] Todd M. Austin. 1999. DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design. In Proceedings of the 32nd Annual IEEE/ACM
International SymposiumonMicroarchitecture (MICRO’99). Haifa, Israel.

[4] Algirdas A. Avižienis. 1995. The Methodology of N-Version Program-
ming. In Software Fault Tolerance, Michael R. Lyu (Ed.). John Wiley
& Sons Ltd., Chapter 2.

[5] Algirdas A. Avižienis and Liming Chen. 1977. On the Implementation
of N-Version Programming for Software Fault Tolerance During
Execution. In Proceedings of 1st Annual International Computer Software
and Applications Conference (COMPSAC’77). Chicago, USA.

[6] Algirdas A. Avižienis and John P. J. Kelly. 1984. Fault Tolerance by
Design Diversity: Concepts and Experiments. IEEE Computer 17, 8
(August 1984).

[7] Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin Zhong. 2020.
Theseus: an Experiment in Operating System Structure and State
Management. InProceedings of the 14thUSENIXConference onOperating
Systems Design and Implementation (OSDI ’20). Virtual Conference.

[8] James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully,
Bernhard Kragl, Seth Markle, Kyle Sauri, Drew Schleit, Grant Slatton,
Serdar Tasiran, Jacob Van Geffen, and AndrewWarfield. 2021. Using
Lightweight Formal Methods to Validate a Key-Value Storage Node
in Amazon S3. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP ’21). Virtual Event, Germany.

[9] Matthias Brun, Reto Achermann, Tej Chajed, Jon Howell, Gerd Zell-
weger, and Andrea Lattuada. 2023. Beyond isolation: OS verification as

20

a foundation for correct applications. In Proceedings of the Workshop on
Hot Topics in Operating Systems (HOTOS ’23). Providence, Rhode Island.

[10] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and
Armando Fox. 2004. Microreboot – A Technique for Cheap Recovery.
In Proceedings of the 6th Symposium on Operating Systems Design and
Implementation (OSDI ’04). San Francisco, CA.

[11] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay
undefinedleri, Adam Chlipala, M. Frans Kaashoek, and Nickolai
Zeldovich. 2017. Verifying a high-performance crash-safe file system
using a tree specification. In Proceedings of the 26th ACM Symposium
on Operating Systems Principles (SOSP ’17). Shangai, China.

[12] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans
Kaashoek, and Nickolai Zeldovich. 2015. Using Crash Hoare logic for
certifying the FSCQ file system. In Proceedings of the 25th ACM Sympo-
sium on Operating Systems Principles (SOSP ’15). Monterey, California.

[13] Zhihao Cheng. 2018. ext4_handle_inode_extension: i_size_read(inode)
< EXT4_I(inode)->i_disksize. https://bugzilla.kernel.org/show_bug.
cgi?id=217159.

[14] Jonathan Corbet. 2013. The multiqueue block layer. https:
//lwn.net/Articles/552904/.

[15] Jonathan Corbet. 2021. Clarifying memory management with page
folios. https://lwn.net/Articles/849538/.

[16] Jonathan Corbet. 2021. Multi-generational LRU: the next generation.
https://lwn.net/Articles/856931/.

[17] Alex Depoutovitch and Michael Stumm. 2010. Otherworld: Giving
Applications a Chance to Survive OS Kernel Crashes. In Proceedings of
the 5th European Conference on Computer Systems (EuroSys ’10). Paris,
France.

[18] Harish Dattatraya Dixit, Sneha Pendharkar, Matt Beadon, Chris
Mason, Tejasvi Chakravarthy, Bharath Muthiah, and Sriram Sankar.
2021. Silent Data Corruptions at Scale. CoRR abs/2102.11245 (2021).
https://arxiv.org/abs/2102.11245

[19] Jake Edge. 2023. Converting filesystems to iomap. https:
//lwn.net/Articles/935934/.

[20] Daniel Ford, François Labelle, Florentina I. Popovici, Murray Stokely,
Van-Anh Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan. 2010.
Availability in Globally Distributed Storage Systems. In Proceedings
of the 9th Symposium on Operating Systems Design and Implementation
(OSDI ’10). Vancouver, Canada.

[21] Daniel Fryer, Kuei Sun, Rahat Mahmood, Tinghao Cheng, Shaun Ben-
jamin, Ashvin Goel, and Angela Demke Brown. 2012. Recon: Verifying
File System Consistency at Runtime. In Proceedings of the 10th USENIX
Symposium on File and Storage Technologies (FAST ’12). San Jose, CA.

[22] Haryadi S. Gunawi, Cindy Rubio-Gonzalez, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Ben Liblit. 2008. EIO: Error Handling
is Occasionally Correct. In Proceedings of the 6th USENIX Symposium
on File and Storage Technologies (FAST ’08). San Jose, CA.

[23] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, andAndrew S.
Tanenbaum. 2006. Construction of a Highly Dependable Operating
System. In Proceedings of the 6th European Dependable Computing
Conference.

[24] Peter H. Hochschild, Paul Turner, Jeffrey C. Mogul, Rama Govindaraju,
Parthasarathy Ranganathan, David E. Culler, and Amin Vahdat. 2021.
Cores That Don’t Count. In Proceedings of the Workshop on Hot Topics
in Operating Systems (HOTOS ’21). Ann Arbor, Michigan.

[25] Lexiang Huang, Matthew Magnusson, Abishek Bangalore Muralikr-
ishna, Salman Estyak, Rebecca Isaacs, Abutalib Aghayev, Timothy
Zhu, and Aleksey Charapko. 2022. Metastable Failures in theWild. In
Proceedings of the 16th USENIX Conference on Operating Systems Design
and Implementation (OSDI ’22). Carlsbad, CA.

[26] Jonathan Corbet. 2020. The ABI status of filesystem formats.
https://lwn.net/Articles/833696/.

[27] The kernel development community. 2024. Linux kernel coding style:
Do not crash the kernel. https://www.kernel.org/doc/html/latest/

process/coding-style.html#do-not-crash-the-kernel.
[28] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu,

and Taesoo Kim. 2019. Finding Semantic Bugs in File Systems with
an Extensible Fuzzing Framework. In Proceedings of the 26th ACM
SymposiumonOperating SystemsPrinciples (SOSP ’19). Ontario,Canada.

[29] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Michael Norrish, Rafal Kolanski, Thomas Sewell, Harvey Tuch, and
Simon Winwood. 2009. seL4: Formal Verification of an OS Kernel.
In Proceedings of the 22nd ACM Symposium on Operating Systems
Principles (SOSP ’09). Big Sky, Montana.

[30] John C. Knight and Nancy G. Leveson. 1986. An experimental
evaluation of the assumption of independence in multiversion
programming. IEEE Transactions on Software Engineering SE-12, 1
(1986), 96–109. https://doi.org/10.1109/TSE.1986.6312924

[31] Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, and Viktor
Vafeiadis. 2021. PerSeVerE: Persistency semantics for verification
under ext4. Proceedings of the ACM on Programming Languages 5, POPL
(2021), 1–29.

[32] Harendra Kumar, Yuvraj Patel, Ram Kesavan, and Sumith Makam.
2017. High Performance Metadata Integrity Protection in the WAFL
Copy-on-Write File System. In Proceedings of the 15th USENIX
Conference on File and Storage Technologies (FAST ’17). Santa Clara, CA.

[33] Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha
Subasinghe, Yi Zhou, Jon Howell, Bryan Parno, and Chris Hawblitzel.
2023. Verus: Verifying rust programs using linear ghost types. Proceed-
ings of the ACM on Programming LanguagesOOPSLA1 (2023), 286–315.

[34] Jialin Li, Samantha Miller, Danyang Zhuo, Ang Chen, Jon Howell,
and Thomas Anderson. 2021. An incremental path towards a safer
OS kernel. In Proceedings of the Workshop on Hot Topics in Operating
Systems (HOTOS ’21). Ann Arbor, Michigan.

[35] Linus Torvalds. 2002. [BK PATCH] USB changes for 2.5.34.
https://yarchive.net/comp/linux/BUG.html.

[36] Inc. Linux Kernel Organization. [n.d.]. Linux Page Replacement
Policy. https://www.kernel.org/doc/gorman/html/understand/
understand013.html.

[37] Jing Liu, Anthony Rebello, Yifan Dai, Chenhao Ye, Sudarsun Kannan,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2021. Scale
and Performance in a Filesystem Semi-Microkernel. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles (SOSP ’21).
Virtual Event, Germany.

[38] Wenqing Liu. 2018. array-index-out-of-bounds in fs/f2fs/segment.c.
https://bugzilla.kernel.org/show_bug.cgi?id=215657.

[39] Yifei Liu, Manish Adkar, Gerard Holzmann, Geoff Kuenning, Pei
Liu, Scott A. Smolka, Wei Su, and Erez Zadok. 2024. Metis: File
System Model Checking via Versatile Input and State Exploration.
In Proceedings of the 19th USENIX Conference on File and Storage
Technologies (FAST ’24). Santa Clara, CA.

[40] David E Lowell, Subhachandra Chandra, and Peter Chen. 2000.
Exploring Failure Transparency and the Limits of Generic Recovery.
In Proceedings of the 4th Symposium on Operating Systems Design and
Implementation (OSDI ’00). San Diego, CA.

[41] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and
Shan Lu. 2013. A Study of Linux File System Evolution. In Proceedings
of the 11th USENIX Symposium on File and Storage Technologies (FAST
’13). San Jose, CA.

[42] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Mike Dalton, Nandita Dukkipati,
William C. Evans, Steve Gribble, Nicholas Kidd, Roman Kononov,
Gautam Kumar, Carl Mauer, Emily Musick, Lena Olson, Mike Ryan,
Erik Rubow, Kevin Springborn, Paul Turner, Valas Valancius, Xi
Wang, and Amin Vahdat. 2019. Snap: a Microkernel Approach to Host
Networking. In Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP ’19). Ontario, Canada.

21

https://bugzilla.kernel.org/show_bug.cgi?id=217159
https://bugzilla.kernel.org/show_bug.cgi?id=217159
https://lwn.net/Articles/552904/
https://lwn.net/Articles/552904/
https://lwn.net/Articles/849538/
https://lwn.net/Articles/856931/
https://arxiv.org/abs/2102.11245
https://lwn.net/Articles/935934/
https://lwn.net/Articles/935934/
https://lwn.net/Articles/833696/
https://www.kernel.org/doc/html/latest/process/coding-style.html#do-not-crash-the-kernel
https://www.kernel.org/doc/html/latest/process/coding-style.html#do-not-crash-the-kernel
https://doi.org/10.1109/TSE.1986.6312924
https://yarchive.net/comp/linux/BUG.html
https://www.kernel.org/doc/gorman/html/understand/understand013.html
https://www.kernel.org/doc/gorman/html/understand/understand013.html
https://bugzilla.kernel.org/show_bug.cgi?id=215657

[43] Daejun Park and Dongkun Shin. 2017. iJournaling: Fine-Grained Jour-
naling for Improving the Latency of Fsync SystemCall. In Proceedings of
the USENIXAnnual Technical Conference (USENIX ’17). Santa Clara, CA.

[44] Cilium Project (post in Hacker News). 2020. EBPF is turning the Linux
kernel into a microkernel. https://news.ycombinator.com/item?id=
22953730.

[45] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou.
2005. Rx: Treating Bugs As Allergies. In Proceedings of the 20th ACM
Symposium on Operating Systems Principles (SOSP ’05). Brighton, UK.

[46] Bianca Schroeder, Eduardo Pinheiro, andWolf-DietrichWeber. 2009.
DRAM Errors in the Wild: A Large-scale Field Study. In Proceedings
of the Eleventh International Joint Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS ’09). Seattle, WA, USA.

[47] SPDKOpen-sourceTeam. 2021. The StoragePerformanceDevelopment
Kit. https://spdk.io/doc.

[48] Swaminathan Sundararaman, Sriram Subramanian, Abhishek Ra-
jimwale, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and
Michael M. Swift. 2010. Membrane: Operating System Support for
Restartable File Systems. In Proceedings of the 8th USENIX Symposium
on File and Storage Technologies (FAST ’10). San Jose, CA.

[49] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. 2003.
Improving the Reliability of Commodity Operating Systems. In
Proceedings of the 19th ACM Symposium on Operating Systems Principles
(SOSP ’03). Bolton Landing, New York.

[50] Michael M. Swift, Brian N. Bershad, and HenryM. Levy. 2004. Recov-
ering Device Drivers. In Proceedings of the 6th Symposium on Operating
SystemsDesign and Implementation (OSDI ’04). San Francisco, CA, 1–16.

[51] ShaobuWang, Guangyan Zhang, JunyuWei, YangWang, JieshengWu,
and Qingchao Luo. 2023. Understanding Silent Data Corruptions in a
Large Production CPU Population. In Proceedings of the 28th ACM Sym-
posium on Operating Systems Principles (SOSP ’23). Koblenz, Germany.

[52] Wen Xu. 2018. use-after-free in ext4_put_super(). https:
//bugzilla.kernel.org/show_bug.cgi?id=200931.

[53] Junfeng Yang, Can Sar, and Dawson Engler. 2006. EXPLODE: A
Lightweight, General System for Finding Serious Storage System
Errors. In Proceedings of the 7th Symposium on Operating Systems
Design and Implementation (OSDI ’06). Seattle, WA.

[54] Mo Zou, Haoran Ding, Dong Du, Ming Fu, Ronghui Gu, and Haibo
Chen. 2019. Using concurrent relational logicwith helpers for verifying
the AtomFS file system. In Proceedings of the 26th ACM Symposium on
Operating Systems Principles (SOSP ’19). Ontario, Canada.

22

https://news.ycombinator.com/item?id=22953730
https://news.ycombinator.com/item?id=22953730
https://spdk.io/doc
https://bugzilla.kernel.org/show_bug.cgi?id=200931
https://bugzilla.kernel.org/show_bug.cgi?id=200931

	Abstract
	1 Introduction
	2 Background and Approach
	2.1 Recovering from Filesystem Runtime Errors
	2.2 Problem Statement
	2.3 A Practical Approach: RAE

	3 Shadow Filesystems
	3.1 Fault Model
	3.2 Design
	3.3 Contrasting Base and Shadow

	4 Roadmap and Challenges
	4.1 Linux Kernel Filesystems
	4.2 Microkernel Filesystems
	4.3 Cross-Cutting Challenges

	5 Conclusion
	References

