
Shadow Filesystems: Recovering
from Filesystem Runtime Errors

via Robust Alternative Execution
Jing Liu, Xiangpeng Hao

Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, Tej Chajed
University of Wisconsin–Madison

Existing Filesystems:
Excels at Performance OR Correctness

2

CorrectnessPerformance

Kernel filesystems (e.g., ext4, btrfs)

uFS (SOSP ’21)

DevFS (FAST ’18)

LineFS (SOSP ’21)

Caches, concurrency, parallelism, etc

Existing Filesystems:
Excels at Performance OR Correctness

3

CorrectnessPerformance

Kernel filesystems (e.g., ext4, btrfs) FSCQ (SOSP ’15)

AtomFS (SOSP ’19)
DaisyNFS (OSDI ’22)

Yggdrasil (OSDI ’16)
Cogent (ASPLOS ’16)

uFS (SOSP ’21)

DevFS (FAST ’18)

LineFS (SOSP ’21)

Caches, concurrency, parallelism, etc Formally verified implementation

Correctness is difficult Performance is difficult

Can we build a file system
that has both

high performance AND correctness

4

Can we build a file system
that has both

high performance AND correctness

use two filesystems
5

Idea: Two Filesystems to Achieve Both

6

CorrectnessPerformance

Kernel filesystems (e.g., ext4, btrfs) FSCQ (SOSP ’15)

AtomFS (SOSP ’19)
DaisyNFS (OSDI ’22)

Yggdrasil (OSDI ’16)
Cogent (ASPLOS ’16)

uFS (SOSP ’21)

DevFS (FAST ’18)

LineFS (SOSP ’21)

Caches, concurrency, parallelism, etc Formally verified implementation

uFS-Shadow

Performance AND Correctness

Idea: Two Filesystems to Achieve Both

7

CorrectnessPerformance

Kernel filesystems (e.g., ext4, btrfs) FSCQ (SOSP ’15)

AtomFS (SOSP ’19)
DaisyNFS (OSDI ’22)

Yggdrasil (OSDI ’16)
Cogent (ASPLOS ’16)

uFS (SOSP ’21)

DevFS (FAST ’18)

LineFS (SOSP ’21)

Caches, concurrency, parallelism, etc Formally verified implementation

uFS-Shadow

Performance AND Correctness

Robust Alternative Execution

RAE: Robust Alternative Execution
Two filesystems
• A base filesystem (common path)
• High performance

• A shadow filesystem (alternative path)
• Correctness
• Handles the workload that triggers a bug in the base

8

Base Shadow

workload 0workload 1

RAE: Robust Alternative Execution
Two filesystems
• A base filesystem (common path)
• High performance

• A shadow filesystem (alternative path)
• Correctness
• Handles the workload that triggers a bug in the base

9

Base Shadow

workload 1

Can even survive deterministic bugs in the base

Outline

Introduction
Robust Alternative Execution (RAE)
Prototype and Progress Status
Future Challenges

10

RAE: The Base and Shadow Filesystems

Base (common path)
• An existing filesystem optimized for performance

Shadow (alternative path)
• A shadow filesystem that aims to be “bug-free” 11

Basic Functionality

Base Shadow

Driver

Dentry Cache Inode Cache Block Cache

Block Layer IO

Basic Functionality

Driver

Base Executes the Workload

12

write(fd, 4096);
write(fd, 4096);
pread(fd, offset=0);
close(fd);

VFS RAE (operations)
Dentry Cache

Block Layer IO

Basic Functionality

Driver

Inode Cache Block Cache

Inode Cache Block Cache

Base Executes the Workload

13

Dentry Cache Inode Cache Block Cache

Block Layer IO

write(fd, 4096);
write(fd, 4096);
pread(fd, offset=0);
close(fd);

VFS RAE (operations)write(fd,4096)

Basic Functionality

Driver

write(fd,4096)

Base Executes the Workload

14

write(fd, 4096);
write(fd, 4096);
pread(fd, offset=0);
close(fd);

VFS RAE (operations)
write(fd,4096)
write(fd,4096)

Dentry Cache Inode Cache Block Cache

Block Layer IO

Basic Functionality

Driver

Dentry Cache Inode Cache Block Cache

Block Layer IO

Basic Functionality

Driver

Base Executes the Workload

15

write(fd, 4096);
write(fd, 4096);
pread(fd, offset=0);
close(fd);

VFS RAE (operations)

write(fd,4096)
write(fd,4096)

pread(fd,0)

Dentry Cache Inode Cache Block Cache

Block Layer IO

Basic Functionality

Driver

Clean up Base

write(fd, 4096);
write(fd, 4096);
pread(fd, offset=0);
close(fd);

VFS RAE (operations)

16

write(fd,4096)
write(fd,4096)

pread(fd,0)

Hand-off to Shadow

17

write(fd, 4096);
write(fd, 4096);
pread(fd, offset=0);
close(fd);

VFS RAE (operations)
Separate user-space process

for better isolation

Basic Functionality

Driver
write(fd,4096)
write(fd,4096)

pread(fd,0)

Dentry Cache Inode Cache Block Cache

Block Layer IO

Basic Functionality

Driver

Shadow Executes the Workload, Correctly!

18

Basic Functionality

write(fd, 4096);
write(fd, 4096);
pread(fd, offset=0);
close(fd);

VFS RAE (operations)

Generated results
Inode (size=4096)
fd(offset=4096)

Driver
write(fd,4096)
write(fd,4096)

pread(fd,0)

Separate user-space process
for better isolationDentry Cache Inode Cache Block Cache

Block Layer IO

Basic Functionality

Driver
Generated results

Inode (size=8192)
fd(offset=8192)
pread() results

Dentry Cache Inode Cache Block Cache

Block Layer IO

Basic Functionality

Driver

Base Obtains the Results

19

write(fd, 4096);
write(fd, 4096);
pread(fd, offset=0);
close(fd);

VFS RAE (operations)

Generated results
Inode (size=8192)
fd(offset=8192)
result of pread()

Basic Functionality

Driver

Separate user-space process
for better isolation

Base Continues

20

write(fd, 4096);
write(fd, 4096);
pread(fd, offset=0);
close(fd);

VFS RAE (operations)close(fd)

Dentry Cache Inode Cache Block Cache

Block Layer IO

Basic Functionality

Driver

Challenges

#1 Clean up the base
#2 Correctness of the shadow
#3 Base obtains the results

21

#1 Clean up Base

Dentry Cache Inode Cache Block Cache

Block Layer IO

VFS RAE (operations)

22

write(fd,4096)
write(fd,4096)

pread(fd,0)

Basic Functionality

Driver

Issue: reset the base components without
restarting the OS to clean up buggy states

#2 Correctness of the Shadow

23

Dentry Cache Inode Cache Block Cache

Block Layer IO

Basic Functionality

VFS RAE (operations)

Generated results
Inode (size=8192)
fd(offset=8192)
result of pread()

Basic Functionality

Driver

Driver
write(fd,4096)
write(fd,4096)

pread(fd,0)

Separate user-space process
for better isolation

Issue: bugs in base can be non-deterministic or
deterministic

A Deterministic Bug in ext4 (CVE 2022-1184)

Deterministic bugs are challenging to recover from
• retry by the base will fail again
• shadow’s benefit 24

#/bin/bash
mount -o loop tmp32.img mnt # a corrupted image
mv mnt/foo/bar mnt/foo/YzoUYCy4vTth45i7... ZIOFz
mv mnt/foo/YzoUYCy4vTth45i7... ZIOFz mnt/foo/AIdkBBulG0Pp5lbV... 7oF

#2 Correctness of the Shadow

Techniques
• A much simpler implementation from scratch
• Only basic functionality
•Without any performance component

• Fully-verified implementation is practical
• “Simple” enough for verification
• Implementation from scratch makes verification easy

25

#3 Base Obtains the Results

26

Basic Functionality

Driver

Issue: base needs to continue with shadow’s
output

Separate user-space process
for better isolationDentry Cache Inode Cache Block Cache

Block Layer IO

Basic Functionality

Driver

VFS RAE (operations)

Generated results
Inode (size=8192)
fd(offset=8192)
result of pread()

#3 Base Obtains the Results

Techniques
•Metadata downloading
• Base directly reads the results from known directory

(e.g., in /tmp/inodes), but not from disk
• Shadow never writes to disk

• Base exposes APIs to read shadow’s output
• E.g., InitInodeCache(path=/tmp/inodes)

27

Three Challenges

#1 Clean up the base
• reset all components in the base without restarting the OS

#2 Correctness of the shadow
• simple implementation from scratch and fully-verified

#3 Base obtains the results
• new API in base to read from (in-memory) temporary files

28

Prototype and Progress Status

Prototyping in uFS
• A high-performance microkernel style filesystem (SOSP ’21)
• Clean up the base
• restart the process is enough

• Correctness of the shadow
• 35K Loc C++ (base) vs. 2.5K Loc Rust (shadow)
• Verification of the rust implementation is in progress
• Verus: automatic prover for rust language

29

Outline

Introduction
Robust Alternative Execution (RAE)
Prototype and Progress Status
Future Challenges

30

Future Challenges

Testing the discrepancies
• Given a workload, what if shadow and base produce different

results?

31

Future Challenges

Testing the discrepancies
Trusted code
• The interaction between base and shadow
• Hand-off
• Downloading

32

Future Challenges

Testing the discrepancies
Trusted code
Design the shadow to be friendly to verify
• Interesting issues due to Rust’s interaction with driver (i.e., C

code)
• On-disk format is within the specification
• E.g., handle crafted image

33

Future Challenges

Testing the discrepancies
Trusted code
Design the shadow to be friendly to verify
Maintain the shadow while the base evolves
• Shadow can be a “simple enough spec.” to evolve as well
• An up-to-date document

34

Future Challenges

Testing the discrepancies
Trusted code
Design the shadow to be friendly to verify
Maintain the shadow while the base evolves
Linux kernel filesystems
• “Reset the base without restarting the OS” and “Metadata

downloading” are more challenging
• Each base (ext4, btrfs) needs one shadow

35

Summary

Robust Alternative Execution
Two filesystems to achieve both high performance and correctness
• An existing base: optimized for performance
• Build a shadow
• From scratch
• Avoid any performance optimization
• Fully-verified implementation

• Coordination between base and shadow

36

Summary

Robust Alternative Execution
Two filesystems to achieve both high performance and correctness
• An existing base: optimized for performance
• Build a shadow
• From scratch
• Avoid any performance optimization
• Fully-verified implementation

• Coordination between base and shadow

37Thank you!

