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Can we build a file system 
that has both 

high performance AND correctness
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Idea: Two Filesystems to Achieve Both
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RAE: Robust Alternative Execution
Two filesystems
• A base filesystem (common path)
• High performance

• A shadow filesystem (alternative path)
• Correctness
• Handles the workload that triggers a bug in the base
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RAE: Robust Alternative Execution
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• A shadow filesystem (alternative path)
• Correctness
• Handles the workload that triggers a bug in the base
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Can even survive deterministic bugs in the base



Outline

Introduction
Robust Alternative Execution (RAE)
Prototype and Progress Status
Future Challenges
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RAE: The Base and Shadow Filesystems

Base (common path)
• An existing filesystem optimized for performance

Shadow (alternative path)
• A shadow filesystem that aims to be “bug-free” 11
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Base Executes the Workload
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Dentry Cache Inode Cache Block Cache
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Clean up Base
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Hand-off to Shadow
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Shadow Executes the Workload, Correctly!

18

Basic Functionality

write(fd, 4096);
write(fd, 4096);
pread(fd, offset=0);
close(fd);

VFS RAE (operations)

Generated results
Inode (size=4096)
fd(offset=4096)

Driver
write(fd,4096)
write(fd,4096)

pread(fd,0)

Separate user-space process 
for better isolationDentry Cache Inode Cache Block Cache

Block Layer IO

Basic Functionality

Driver
Generated results

Inode (size=8192)
fd(offset=8192)
pread() results



Dentry Cache Inode Cache Block Cache
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Base Obtains the Results
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Base Continues
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Challenges

#1 Clean up the base
#2 Correctness of the shadow
#3 Base obtains the results
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#1 Clean up Base

Dentry Cache Inode Cache Block Cache

Block Layer IO

VFS RAE (operations)
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Issue: reset the base components without 
restarting the OS to clean up buggy states



#2 Correctness of the Shadow
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A Deterministic Bug in ext4 (CVE 2022-1184)

Deterministic bugs are challenging to recover from
• retry by the base will fail again 
• shadow’s benefit 24

#/bin/bash
mount -o loop tmp32.img mnt  # a corrupted image
mv mnt/foo/bar mnt/foo/YzoUYCy4vTth45i7... ZIOFz
mv mnt/foo/YzoUYCy4vTth45i7... ZIOFz  mnt/foo/AIdkBBulG0Pp5lbV... 7oF



#2 Correctness of the Shadow

Techniques
• A much simpler implementation from scratch
• Only basic functionality 
•Without any performance component

• Fully-verified implementation is practical
• “Simple” enough for verification
• Implementation from scratch makes verification easy
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#3 Base Obtains the Results
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Basic Functionality

Driver

Issue: base needs to continue with shadow’s 
output

Separate user-space process 
for better isolationDentry Cache Inode Cache Block Cache

Block Layer IO
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Driver
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fd(offset=8192)
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#3 Base Obtains the Results

Techniques
•Metadata downloading
• Base directly reads the results from known directory 

(e.g., in /tmp/inodes), but not from disk
• Shadow never writes to disk

• Base exposes APIs to read shadow’s output
• E.g., InitInodeCache(path=/tmp/inodes)
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Three Challenges

#1 Clean up the base
• reset all components in the base without restarting the OS

#2 Correctness of the shadow
• simple implementation from scratch and fully-verified 

#3 Base obtains the results
• new API in base to read from (in-memory) temporary files
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Prototype and Progress Status

Prototyping in uFS
• A high-performance microkernel style filesystem (SOSP ’21)
• Clean up the base
• restart the process is enough

• Correctness of the shadow
• 35K Loc C++ (base) vs. 2.5K Loc Rust (shadow)
• Verification of the rust implementation is in progress
• Verus: automatic prover for rust language
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Outline

Introduction
Robust Alternative Execution (RAE)
Prototype and Progress Status
Future Challenges
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Future Challenges

Testing the discrepancies
• Given a workload, what if shadow and base produce different 

results?

31



Future Challenges

Testing the discrepancies
Trusted code
• The interaction between base and shadow
• Hand-off
• Downloading
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Future Challenges

Testing the discrepancies
Trusted code
Design the shadow to be friendly to verify
• Interesting issues due to Rust’s interaction with driver (i.e., C 

code)
• On-disk format is within the specification
• E.g., handle crafted image
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Future Challenges

Testing the discrepancies
Trusted code
Design the shadow to be friendly to verify
Maintain the shadow while the base evolves
• Shadow can be a “simple enough spec.” to evolve as well
• An up-to-date document
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Future Challenges

Testing the discrepancies
Trusted code
Design the shadow to be friendly to verify
Maintain the shadow while the base evolves
Linux kernel filesystems
• “Reset the base without restarting the OS” and “Metadata 

downloading” are more challenging
• Each base (ext4, btrfs) needs one shadow
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Summary

Robust Alternative Execution
Two filesystems to achieve both high performance and correctness
• An existing base: optimized for performance
• Build a shadow
• From scratch
• Avoid any performance optimization
• Fully-verified implementation

• Coordination between base and shadow
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