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Motivation: #1 Storage Devices Evolve Fast

HDD PCle SSD Ultra-fast Devices

|OPS: 1,000 47,000 550,000
BWV: 55 MB/s 500 MB/s 2500 MB/s
Latency: 7.1 ms 160 us 10 us



Motivation: #2 0S Architectures fails behind

* OS design decisions were made for millisecond-scale I/O devices
* e.g.,, HDD access outweighs the cost of two context switches (microseconds)
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Motivation: #3 File Systems bhorn in single-core era

* Poor multi-core scalability

* Hard to leverage multi-core hardware features
* e.g., fast inter-core communication, cache locality
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Motivation: #4 HW optimized toolkits are in the wild

* Developing toolkits for high performance Directly

in userland: , [fanage
* Data Plane Development Kit (DPDK)

* Storage Performance Development Kit (SPDK)
* Threading Building Blocks (TBB)

User space

kernel space

* Valuable cornerstone for Storage Stack
* Make FS development easier (than kernel)

* Reconsider “legacy” OS design decisions:
* Interrupt-based notification

* Operating system managed threading



Our Idea: File Systems as Processes

* A direct-access file system as a
user-level process

* Advantages:
* Developer velocity

* Guarantee essential file system properties

* integrity, concurrency, crash-consistency and
security

* High performance

* Prototype - DashFS
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Classes of File System Architectures
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File Systems as Processes (FSP) Architecture
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* FS Proc:a standalone user-level process
* FSLib: provides POSIX compatibility; send(recv) req(reply) to(from) Fs Proc

* Communication Channel: shared memory between App and FS Proc

Kernel is only involved once to securely set up Communication Channel 9



File Systems as Processes (FSP) Architecture

FS Proc
One core
or FS Proc
FS access Communication e
' Channel : : ==5
initialization security .

Dev
Init_proc_access()

* FS Proc:a standalone user-level process
* FSLib: provides POSIX compatibility; send(recv) req(reply) to(from) Fs Proc
* Communication Channel: shared memory between App and FS Proc
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File Systems as Processes (FSP) Architecture
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* FS Proc:a standalone user-level process

* FSLib: provides POSIX compatibility; send(recv) req(res) to(from) Fs Proc
* Communication Channel: shared memory between App and FS Proc

11



Challenges of FSP

= Efficient Communication
= Scheduling & Concurrency
= OS Coordination

= Reliability

Focus on challenges unique to FSP approach



Efficient Communication

* The foundation of a high-performance file system process

App Proc

Overhead:

> Address Space Switch

> Cache pollution

FS Proc

e Solution:

4 FS Proc

* Leverage fast inter-core communication and cache-to-cache transfer
* Specialized memory management
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Scheduling & Concurrency
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* More concurrency (threads) to be managed
* The complexity of threading (similar to building a web server)

* The complexity of asynchronous programming
* Poll-mode driver (no interrupt) and complicated FSM cross several layers



OS Coordination
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CPU scheduler

* |/O related information is maintained as part of the process’s OS

state

* e.g, credential and process aliveness

* CPU scheduler should be aware of the core running FS



Reliability

App Proc

Communication
Channel

Communication
Channel
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kernel

* An new opportunity for applications to stay alive when FS crashes
* Problems: crash detection and states reconstruction

* Backward mode which resembles kernel FS crash semantics
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DashFS Prototype

* Current Status:
* Support open(), read(), write(), close(), stat(), sync() and init()
* Efficient Communication is in hand
* Working on the rest three challenges

e Evaluation:
* The communication channel is efficient
* Micro-benchmark results are promising

* Experiment Platform:
* Intel i7-8700K CPU, 32G RAM and an Intel Optane SSD 905P (960GB)



The communication channel is efficient

* An Application issues 4KB sequential write requests through various
# of threads

* Uses memory as backend
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* Unlikely to be a throughput bottleneck

* Able to achieve sub-microsecond latency



Micro-benchmark Results

* Single Operation: * Multiple operations:
° {K Random Read to single * create() = write() = sync()
file = C|OS€()

* Several traps when using ext4
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Conclusion

* Towards a storage era of microsecond latency
* Eliminating software (OS) overhead is critical
* Without compromising essential file system properties

* Building a file system as a user-level process can be a promising
avenue
* Great development velocity
* Leverage inter-core communication
* Initial results present significant performance gain

* We are working on tackling more challenges via DashFS



