File Systems as
Processes

ling Liu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

University of Wisconsin Madison

Sudarsun Kannan
Rutgers University

Motivation: #1 Storage Devices Evolve Fast

HDD PCle SSD Ultra-fast Devices

|OPS: 1,000 47,000 550,000
BWV: 55 MB/s 500 MB/s 2500 MB/s
Latency: 7.1 ms 160 us 10 us

Motivation: #2 0S Architectures fails behind

* OS design decisions were made for millisecond-scale I/O devices
* e.g.,, HDD access outweighs the cost of two context switches (microseconds)

User space l ~US T

kernel space

Motivation: #3 File Systems bhorn in single-core era

* Poor multi-core scalability

* Hard to leverage multi-core hardware features
* e.g., fast inter-core communication, cache locality

r | BN ﬂ aAEn
- - ‘HEN;
= W - 1 | |l E
i f LT
L Emn J L | B B
Single-core CFS Multi-core CFS What if ?
& Kernel FS & Kernel FS

. core is running FS CFS: Completely Fair Scheduler

Motivation: #4 HW optimized toolkits are in the wild

* Developing toolkits for high performance Directly

in userland: , [fanage
* Data Plane Development Kit (DPDK)

* Storage Performance Development Kit (SPDK)
* Threading Building Blocks (TBB)

User space

kernel space

* Valuable cornerstone for Storage Stack
* Make FS development easier (than kernel)

* Reconsider “legacy” OS design decisions:
* Interrupt-based notification

* Operating system managed threading

Our Idea: File Systems as Processes

* A direct-access file system as a
user-level process

* Advantages:
* Developer velocity

* Guarantee essential file system properties

* integrity, concurrency, crash-consistency and
security

* High performance

* Prototype - DashFS

User space

File | | E:::E
System | Direct B

App Process

—® App Process
6

Outline

* Introduction

* FSP Architecture

* Challenges

* Prototype - DashFS

* Conclusion

Classes of File System Architectures

Security
Integrity

Sharing

Dev

Kernel-level FS

App

Libra.ry FS

FS Proc

Dev

App Sha-ing
Inte srity

Dev

kernel FS

Hybrid user-level FS

micro-kernel

App

Intejrity

Security

Dev

Security

kernel

Microkernel FS Process

Our FS Process

File Systems as Processes (FSP) Architecture

FS Proc

Communication
Channel
One core

or FS Proc

Communication P
Channel TTF
..,

Dev

Ke
kernel ‘

* FS Proc:a standalone user-level process
* FSLib: provides POSIX compatibility; send(recv) req(reply) to(from) Fs Proc

* Communication Channel: shared memory between App and FS Proc

Kernel is only involved once to securely set up Communication Channel 9

File Systems as Processes (FSP) Architecture

FS Proc
One core
or FS Proc
FS access Communication e
' Channel : : ==5
initialization security .

Dev
Init_proc_access()

* FS Proc:a standalone user-level process
* FSLib: provides POSIX compatibility; send(recv) req(reply) to(from) Fs Proc
* Communication Channel: shared memory between App and FS Proc

10

File Systems as Processes (FSP) Architecture

FS Proc

One core

or FS Proc
rTTH

H LLE

.y

open a file

Kefnelspace
kernel

* FS Proc:a standalone user-level process

* FSLib: provides POSIX compatibility; send(recv) req(res) to(from) Fs Proc
* Communication Channel: shared memory between App and FS Proc

11

Challenges of FSP

= Efficient Communication
= Scheduling & Concurrency
= OS Coordination

= Reliability

Focus on challenges unique to FSP approach

Efficient Communication

* The foundation of a high-performance file system process

App Proc

Overhead:

> Address Space Switch

> Cache pollution

FS Proc

e Solution:

4 FS Proc

* Leverage fast inter-core communication and cache-to-cache transfer
* Specialized memory management

13

Scheduling & Concurrency

Communication EEYSEREEST16)
Channel -
' 'Qr £ Fsm interact w/ app

Communication ’.ﬁ’ FS properties
Channel

interact w/ dev

.;zl l_devN()
Dev

* More concurrency (threads) to be managed
* The complexity of threading (similar to building a web server)

* The complexity of asynchronous programming
* Poll-mode driver (no interrupt) and complicated FSM cross several layers

OS Coordination

App Proc

Communication

Channel

App Proc

Communication

Channel

FS Proc

update__
cred()

proc_
exit()

Dev

One core

or FS Proc
rTTH

H LLE

.y

Kefnelspace
kernel

CPU scheduler

* |/O related information is maintained as part of the process’s OS

state

* e.g, credential and process aliveness

* CPU scheduler should be aware of the core running FS

Reliability

App Proc

Communication
Channel

Communication
Channel

Daemon l Dev

Kefnerspace fs alive? / restart
kernel

* An new opportunity for applications to stay alive when FS crashes
* Problems: crash detection and states reconstruction

* Backward mode which resembles kernel FS crash semantics

Outline

* Introduction

* FSP Architecture
* Challenges

* DashFS Prototype

* Conclusion

17

DashFS Prototype

* Current Status:
* Support open(), read(), write(), close(), stat(), sync() and init()
* Efficient Communication is in hand
* Working on the rest three challenges

e Evaluation:
* The communication channel is efficient
* Micro-benchmark results are promising

* Experiment Platform:
* Intel i7-8700K CPU, 32G RAM and an Intel Optane SSD 905P (960GB)

The communication channel is efficient

* An Application issues 4KB sequential write requests through various
of threads

* Uses memory as backend

9101 0.6

()

2.5 %
D (Vp)

T —049;

S 57 =

= -0.2 2

225 - «

D

o 01— L0

1 2 4 8 16 32
App Thread Number

* Unlikely to be a throughput bottleneck

* Able to achieve sub-microsecond latency

Micro-benchmark Results

* Single Operation: * Multiple operations:
° {K Random Read to single * create() = write() = sync()
file = C|OS€()

* Several traps when using ext4

12 11.52 80 74.5
fg 9 - 60
=] 3
= 6.68 g 41.7
o 6 o' 40
Qo Qo
3 3 3 59
0 0

Ext4 Direct DashFS Ext4 DashFS

Conclusion

* Towards a storage era of microsecond latency
* Eliminating software (OS) overhead is critical
* Without compromising essential file system properties

* Building a file system as a user-level process can be a promising
avenue
* Great development velocity
* Leverage inter-core communication
* Initial results present significant performance gain

* We are working on tackling more challenges via DashFS

