
File Systems as
Processes

Jing Liu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
University of Wisconsin Madison

Sudarsun Kannan
Rutgers University

Motivation: #1 Storage Devices Evolve Fast

PCIe SSD Ultra-fast Devices

IOPS:
BW:
Latency:

1,000
55 MB/s
7.1 ms

47,000
500 MB/s

160 us

550,000
2500 MB/s

10 us

HDD

2

Motivation: #2 OS Architectures fails behind

• OS design decisions were made for millisecond-scale I/O devices
• e.g., HDD access outweighs the cost of two context switches (microseconds)

kernel space

User space

~ms

~us~us

~us

3

Motivation: #3 File Systems born in single-core era

• Poor multi-core scalability

• Hard to leverage multi-core hardware features
• e.g., fast inter-core communication, cache locality

core is running FS

Single-core CFS
& Kernel FS

CFS: Completely Fair Scheduler

Multi-core CFS
& Kernel FS

What if ?

4

Motivation: #4 HW optimized toolkits are in the wild

• Developing toolkits for high performance
in userland:
• Data Plane Development Kit (DPDK)
• Storage Performance Development Kit (SPDK)
• Threading Building Blocks (TBB)

kernel space

User spaceD
ri

ve
r

A
PI

Kits

Directly
Manage
Devices

System
SW ?

OS
• Valuable cornerstone for Storage Stack

• Make FS development easier (than kernel)
• Reconsider “legacy” OS design decisions:

• Interrupt-based notification
• Operating system managed threading

5

Our Idea: File Systems as Processes

• A direct-access file system as a ----
---user-level process
• Advantages:
• Developer velocity
• Guarantee essential file system properties

• integrity, concurrency, crash-consistency and
security

• High performance

• Prototype - DashFS

User space
File

System Direct

App Process
App Process

6

Outline

• Introduction

• FSP Architecture
• Challenges
• Prototype - DashFS
• Conclusion

7

Classes of File System Architectures

Kernel-level FS Hybrid user-level FS Microkernel FS Process

Library FS
Dev

App

kernel FS

Security

Integrity

Sharing

App
FS Proc

micro-kernel

Security

Sharing

Integrity

Dev

IPC

Our FS Process

kernel FS

Security

Integrity

Sharing

Dev

App

Once

8

Security

FS Proc

kernel

Security

App
Sharing

Integrity Dev

User space

File Systems as Processes (FSP) Architecture

• FS Proc: a standalone user-level process

• FSLib: provides POSIX compatibility; send(recv) req(reply) to(from) Fs Proc
• Communication Channel: shared memory between App and FS Proc

9

FS Proc

Dev

FSLib
App Proc Communication

Channel One core
for FS Proc

FSLib
App Proc Communication

Channel

Kernel space

kernel

Kernel is only involved once to securely set up Communication Channel

User space

File Systems as Processes (FSP) Architecture

• FS Proc: a standalone user-level process

• FSLib: provides POSIX compatibility; send(recv) req(reply) to(from) Fs Proc
• Communication Channel: shared memory between App and FS Proc

10

FS Proc

Dev

One core
for FS Proc

FSLib
App Proc Communication

Channel

Kernel space

kernel

FS access
initialization

verify credential, allocate mem ...

security

fs_init()
init_proc_access()

User space

File Systems as Processes (FSP) Architecture

• FS Proc: a standalone user-level process

• FSLib: provides POSIX compatibility; send(recv) req(res) to(from) Fs Proc
• Communication Channel: shared memory between App and FS Proc

11

FS Proc

Dev

One core
for FS Proc

FSLib
App Proc

Kernel space

kernel

open a file
security

Sharing

Integrity

fs_open()

req

...
res

req

Challenges of FSP

Efficient Communication

Scheduling & Concurrency
OS Coordination
Reliability

12

Focus on challenges unique to FSP approach

Efficient Communication

• The foundation of a high-performance file system process

13

App Proc

FS Proc

Shared
Mem

Overhead:
‣ Address Space Switch
‣ Cache pollution

App Proc

FS Proc

• Solution:
• Leverage fast inter-core communication and cache-to-cache transfer
• Specialized memory management

Scheduling & Concurrency

14

User space

FS Proc

Dev

FSLib
App Proc Communication

Channel

FSLib
App Proc Communication

Channel

• More concurrency (threads) to be managed

• The complexity of threading (similar to building a web server)

• The complexity of asynchronous programming
• Poll-mode driver (no interrupt) and complicated FSM cross several layers

poll_apps()

poll_dev()

FSM interact w/ app

interact w/ dev

FS properties

OS Coordination

• I/O related information is maintained as part of the process’s OS
state
• e.g., credential and process aliveness

• CPU scheduler should be aware of the core running FS 15

User space

FS Proc

Dev

FSLib
App Proc Communication

Channel One core
for FS Proc

FSLib
App Proc Communication

Channel

Kernel space

kernel
pid: {uid, gid, ...}
pid: {zombie?}

CPU scheduler

update_
cred()
proc_
exit()

upcall

Reliability

• An new opportunity for applications to stay alive when FS crashes
• Problems: crash detection and states reconstruction

• Backward mode which resembles kernel FS crash semantics
16

User space

FS Proc

Dev

FSLib
App Proc Communication

Channel

FSLib
App Proc Communication

Channel

Kernel space

kernel

Daemon

fs alive? / restart

Outline

• Introduction

• FSP Architecture
• Challenges
• DashFS Prototype
• Conclusion

17

DashFS Prototype

• Current Status:
• Support open(), read(), write(), close(), stat(), sync() and init()
• Efficient Communication is in hand
• Working on the rest three challenges

• Evaluation:
• The communication channel is efficient
• Micro-benchmark results are promising

• Experiment Platform:
• Intel i7-8700K CPU, 32G RAM and an Intel Optane SSD 905P (960GB)

18

1 2 4 8 16 32
0

2.5

5

7.5

10

App Thread Number

IO
PS

 (M
illi

on
 R

eq
s/

se
c)

0.0

0.2

0.4

0.6

La
te

nc
y

(u
s)

• An Application issues 4KB sequential write requests through various
of threads
• Uses memory as backend

The communication channel is efficient

19

• Unlikely to be a throughput bottleneck

• Able to achieve sub-microsecond latency

Storage Device Max IOPS

Micro-benchmark Results

20

• Single Operation:
• 4K Random Read to single

file

• Multiple operations:
• create(). write() . sync()

....close()
• Several traps when using ext4

Conclusion

• Towards a storage era of microsecond latency
• Eliminating software (OS) overhead is critical
• Without compromising essential file system properties

• Building a file system as a user-level process can be a promising
avenue
• Great development velocity
• Leverage inter-core communication
• Initial results present significant performance gain

• We are working on tackling more challenges via DashFS

21

